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Abstract

We have studied the electronic structure and the current-voltage (I-V) characteristics of one-dimensional InSe
nanoribbons using the density functional theory combined with the nonequilibrium Green’s function method.
Nanoribbons having bare or H-passivated edges of types zigzag (Z), Klein (K), and armchair (A) are taken into
account. Edge states are found to play an important role in determining their electronic properties. Edges Z
and K are usually metallic in wide nanoribbons as well as their hydrogenated counterparts. Transition from
semiconductor to metal is observed in hydrogenated nanoribbons HZZH as their width increases, due to the
strong width dependence of energy difference between left and right edge states. Nevertheless, electronic
structures of other nanoribbons vary with the width in a very limited scale. The I-V characteristics of bare
nanoribbons ZZ and KK show strong negative differential resistance, due to spatial mismatch of wave functions in
energy bands around the Fermi energy. Spin polarization in these nanoribbons is also predicted. In contrast, bare
nanoribbons AA and their hydrogenated counterparts HAAH are semiconductors. The band gaps of nanoribbons AA
(HAAH) are narrower (wider) than that of two-dimensional InSe monolayer and increase (decrease) with the
nanoribbon width.

Keywords: InSe monolayer nanoribbon, Electronic structure, Negative differential resistance, Semiconductor-metal
transition

Background
Atomically thin two-dimensional (2D) materials have
attracted intensive interest in the last decade due to their
unique electronic properties and promising application
potential [1–4] mainly originated from their reduced di-
mensionality. One-dimensional (1D) nanoribbons can
then be fabricated by tailoring the 2D materials [5] or
assembling atoms precisely in the bottom-up way [6, 7].
In the nanoribbons, the electronic properties are further
modulated by additional confinement and possible edge
functionalization [8, 9]. For example, their energy gap, a
key parameter of semiconductor, may be continuously
adjusted by their width [10–15]. The dangling bonds of
the edge atoms can be passivated by H atoms in proper
environment, and the hydrogenation may stabilize the
edges from structural reconstruction [16, 17].

Recently, a new member, the InSe monolayer, has been
added to the 2D materials. Bulk InSe belongs to the fam-
ily of layered metal chalcogenide semiconductors and
has been intensively studied in the last decades [18–22].
Each of its quadruple layers has a hexagonal lattice that
effectively consists of four covalently bonded Se–In–In–
Se atomic planes. The quadruple layers are stacked
together by van der Waals interactions at an interlayer
distance around 0.8 nm. The stacking style defines its
polytypes such as β, γ, and ε, among which the β and γ
ones have direct band gaps. Nevertheless, the single
quadruple InSe layer was successfully fabricated only in
the last years by the mechanical exfoliation method
[23, 24]. Since then, the observed extraordinary high elec-
tron mobility and special physical properties of InSe mono-
layers have triggered extensive study on their possible
applications in optoelectronic devices [24–26] and elec-
tronic devices [27, 28]. For the sake of exploring novel
functional properties, theoretical study can also be an effi-
cient approach. Numerical simulations of structural, elec-
tric, and magnetic properties of InSe monolayers and their
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modulation by doping, defect, and, adsorption have been
carried out [29–38]. The band structures of mono- and
few-layer InSe have been carefully studied by density func-
tional theory [29]. The dominant intrinsic defects in InSe
monolayer have been figured out [30], and the properties
of native defects and substitutional impurities in monolayer
InSe have been estimated by calculation of formation and
ionization energies [31]. In addition, it has been predicted
that substitutional doping of As atoms can transfer InSe
monolayer from nonmagnetic semiconductor to magnetic
semiconductor/metal or half-semimetal [32]. The thermal
conductivity of InSe monolayers can be greatly modulated
by their size [33]. However, to our best knowledge, there
are few studies on electronic properties of one-dimensional
nanoribbons of InSe monolayer up to now.
In this paper, we carry out first-principles simulation

on electronic properties of 1D bare zigzag, armchair, and
Klein monolayer InSe nanoribbons and their hydrogen-
passivated counterparts. Our studies indicate the transi-
tion from semiconductor to metal in hydrogen-
passivated InSe zigzag nanoribbons and the interesting
energy gap change in armchair nanoribbons. The
current-voltage curves show diversified electric proper-
ties for nanoribbons with different edges.

Methods
The three typical edge patterns of honeycomb lattice,
zigzag (Z), armchair (A), and Klein (K) are taken into ac-
count [39]. As illustrated in Fig. 1, a nanoribbon can be
identified by its width number n and the combination of

the types of its two edges. There are five classes of bare
nanoribbons: n-ZZ, n-AA, n-KK, n-ZK, and n-KZ. Note
that n-ZK is different from n-KZ because we assume
that the left (right) Z edge ends with In (Se) atoms. If
each edge atom is passivated by one hydrogen atom, we
denote the passivated nanoribbons as n-HZZH, n-
HAAH, n-HKKH, n-HZKH, and n-HKZH, respectively.
A Se-In-In-Se quadruple layer of lattice constant 4.05 Å
with Se-In layer distance 0.055 Å and In-In layer dis-
tance 0.186 Å is used to make nanoribbons before
geometry optimization [21].
All the computations are performed using the Atomis-

tix ToolKit (ATK) based on DFT with the pseudopoten-
tial technique. The exchange correlation functional in
the local spin density approximation with the Perdew–
Zunger parameterization (LSDA-PZ) is adopted. The
wave functions are expanded on a basis set of double-ζ
orbitals plus one polarization orbital (DZP). An energy
cutoff of 3000 eV, a k-space mesh grid of 1 × 1 × 100, and
an electronic temperature of 300 K are used in the real-
axis integration for the non-equilibrium Green’s func-
tions. A 15-Å thick vacuum layer in the supercells is
adopted to separate the nanoribbons from their neighbor
images in both x and y directions and to ensure the sup-
pression of the coupling between them. Band structures
are calculated after full geometry relaxation with a force
tolerance of 0.02 eV/Å−1.
To simulate the electronic transport property of the

nanoribbons, we connect each one into a circuit with
left (right) chemical potential μL(μR) [40, 41]. The nanor-
ibbon can then be partitioned into three regions, the left

Fig. 1 Top and side views of 6-HZKH (a) and 11-HAAH (b) InSe nanoribbons. Nanoribbon width number n, width wz, and lattice constants cz or
ca are marked
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(right) electrode L (R) and the central region C. The
spin-dependent current can be estimated by the
Landauer-Büttiker formula [42].

Iσ Vbð Þ ¼ e
h

Z þ∞

−∞
T σ E;Vbð Þ f L E−μLð Þ− f R E−μRð Þ½ �dE

with spin σ = ↑ , ↓ and voltage bias Vb = (μR − μL)/e. Here,
T σðE;VbÞ ¼ Tr½ΓLGσΓRG†

σ � is the transmission spectrum
with Gσ the retarded Green’s function in region C and ΓL
(ΓR) the coupling matrix between C and L (R). fL (fR) is the
Fermi distribution function of electrons in L (R).

Results and Discussion
In Fig. 1, we scheme the top and side views of (a) 6-
HZKH and (b) 11-HAAH nanoribbons with lattice con-
stants cz = 4.05 Å and ca = 7.01 Å, respectively. Edge K is
along the direction parallel to that of edge Z. The ex-
tending direction z of the nanoribbon is marked by blue
arrows. Different from the case in graphene nanoribbon
[39], no edge reconstruction is observed for the three
edge styles in both bare and H-passivated InSe nanorib-
bons, and our simulation indicates that they are all ener-
getically stable.
Bare n-ZZ nanoribbons are magnetic metal except the

2-ZZ one which has a reconstructed geometry and ap-
pears semiconductor. They have similar band structures
as illustrated in Fig. 2a. The p orbitals of edge Se atoms
dominate the contribution to the states near the Fermi
energy similar to the case of InSe monolayer [32], but
more contributions from the In atoms are observed

here. The two partially occupied bands are from the left
and right edge states, respectively, as shown by the Г-
point Bloch states for 4-ZZ nanoribbon. One of them is
spin split and a net magnetic moment, e.g., 0.706 μB for
4-ZZ nanoribbon, appears in each primitive cell on the
left edge.
When the edge atoms are passivated by H atoms, n-

HZZH nanoribbons become nonmagnetic semicon-
ductor for n = 3, 4 and metal for n > 4 as shown in Fig.
2b. Note that the structure becomes unstable for n = 2.
In 4-HZZH nanoribbon, the Bloch states at Г in conduc-
tion (valence) bands near the Fermi energy are confined
to the right (left) edge. They have components similar to
those in 2D InSe monolayer except the H atomic orbital
parts. The highest five bands of the left edge states are
composed of one px, two py, and two pz orbitals of Se
edge atoms. The energy bands of the right (left) edge
states are similar to the conduction (valence) bands in
the Γ-K direction of 2D InSe monolayer [32]. Their sep-
aration in energy depends strongly on n though their
dispersions are insensitive to n. We define Ed as the en-
ergy difference between the minimum of the right edge
states and maximum of the left edge states.
In Fig. 3, we plot Ed versus n and wz and found ap-

proximately an inverse dependence Ed ≈ E0 + a/(wz −w0)
with E0 = − 0.45eV, w0 = 4Å, and a = 4eVÅ. This behavior
is similar to the width dependence of energy gap in zig-
zag graphene and B-N nanoribbons [12–15, 43–47] hav-
ing origin of electron-electron interaction. Narrow
HZZH InSe nanoribbons are semiconductors, and a
transition from semiconductor to metal occurs as the
width increases.

Fig. 2 The band structures of a 3-, 4-, 5-, and 6-ZZ nanoribbons and b 3-, 4-, 5-, and 6-HZZH nanoribbons. Г-point Bloch states near the Fermi en-
ergy are shown for n = 4. The orbits of the states below the Fermi energy are indicated for 4-HZZH nanoribbon
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The band structures of n-KK and n-HKKH nanorib-
bons are not sensitive to the width number n as exem-
plified in Fig. 4a, b, respectively, for n = 4. Compared to
zigzag edge, bare Klein edge has more dangling bonds
which results in significant change of the band structure.
Orbitals of edge Se atoms usually have lower energy
than those of edge In atoms, similar to ZZ nanoribbon.

In HKKH nanoribbons, the suppression of the p orbital
of edge In atoms and the p orbital of edge Se atom by
the passivation of H atoms is obvious. Nevertheless,
one H atom is not enough to passivate all the dan-
gling bonds of the edge atoms. Both KK and HKKH
nanoribbons are metal.
In nanoribbons with a mixing of zigzag and Klein

edges, we observe a combination of energy bands of the
two kinds of edges near the Fermi energy. As shown in
Fig. 4c for the 4-KZ nanoribbon, the dispersion and Γ-
point Bloch states of bands c1, c0, and c−1 are the same
as those of band k1, k0, and k−1 in 4-KK nanoribbon as
plotted in Fig. 4a, while bands c2 and c−2 are the same as
band z1 and z−2 of 4-ZZ nanoribbons in Fig. 2a. Simi-
larly, the band structure of the 4-ZK nanoribbon, as il-
lustrated in Fig. 4d, is composed of band d1 from the
right Klein edge and bands d2, d0, and d−1 from the left
zigzag edge. Since n-ZK and n-KZ nanoribbons keep
part of the energy bands of n-KK nanoribbons near the
Fermi energy, they are both metal as the n-KK nanorib-
bons. For the same reason, the H-passivated nanorib-
bons mixing edges Z and K are also metallic.
Both the AA and HAAH nanoribbons are nonmag-

netic semiconductors as shown in Fig. 5a, b, where the
band structures are plotted for n = 4, 5. The passivation
of H atoms can improve the structural stability energetically
and enlarges the energy gap. Interestingly, the energy gap

Fig. 3 The minimal energy differences Ed between the right and left
edge states near the Fermi energy in n-HZZH nanoribbons are shown
versus n and wz. The fit curve is in red

Fig. 4 The band structures and Γ-point Bloch states of 4-KK (a), 4-HKKH (b), 4-KZ (c), and 4-ZK (d) nanoribbons
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has a zigzag dependence on the nanoribbon width, showing
an odd-even family-like behavior as in graphene and B-N
nanoribbons [10–15, 43–47]. As illustrated in Fig. 5c, n-AA
nanoribbons have a gap (olive square) narrower than that
of 2D InSe monolayer (red dash). The gap increases (de-
creases) monotonically with the width for odd (even) n and
converges to a value of 1.15 eV at the large width limit
when the two edges are decoupled from each other and
stable their energy [13]. The Bloch states of valence band
maximum (VBM) at Г point and conduction band mini-
mum (CBM) at Z point are also shown in Fig. 5c. The par-
ity behavior is observed again with the symmetric (n = 5) or
diagonal (n = 4, 6) distribution of the states around edge Se
atoms at VBM and around edge In atoms at CBM.
On the other hand, the gaps of n-HAAH nanoribbons

(blue circle) are wider than their 2D counterpart and
decrease with the width for both odd and even n. In
passivated nanoribbons, the Bloch states at VBM and
CBM have much less edge component. The correspond-
ing energy gaps are about 1 eV wider than those of the
bare nanoribbons, and the difference diminishes with
width increase [13].

In Fig. 6a, we show the current-voltage (I-V) charac-
teristic of above metallic InSe nanoribbons 4-ZZ
(square), 4-KK (circle), and 4-HKKH (triangle). Spin-up
(spin-down) curves are marked by filled (empty) sym-
bols. The Landauer-Büttiker formula has been employed
to calculate the spin dependent current Iσ when a volt-
age bias Vb is applied between electrodes L and R, with
μR = eVb/2 and μL = − eVb/2 assumed. Negative differen-
tial resistance (NDR) and spin polarization are observed
in 4-ZZ and 4-KK bare nanoribbons under a bias in the
region between 0.5 and 1.2 V. The peak-to-valley ratio
of NDR is larger than 10 for the 4-ZZ nanoribbon due
to the transversal mismatch of wave functions among
energy bands near the Fermi energy as illustrated in Fig.
2a and explained in the following. Band z1 is the domin-
ant transport channel under Vb < 1.2 V as indicated by
the spin-up and spin-down transmission spectra in Fig.
6b, c, respectively. However, the wave functions of band
z1 are orthogonal to or are separated in space from those
of nearby bands z2, z−1, and z−2. This leads to the mis-
match between the states z1 in one electrode and those
of the same energy in the other electrode under Vb. The

Fig. 5 The band structures of 4- and 5-AA nanoribbons are shown in a and those of 4- and 5-HAAH in b. The energy gaps Eg of n-AA (green)
and n-HAAH (blue) nanoribbons are plotted versus n in c with the gap of InSe monolayer (red) marked. The Bloch states at CBM and VBM for n =
4, 5, and 6 are shown in the right panels of c
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electrons from band z1 in one electrode then have diffi-
culty to transport to the other electrode with energy
conservation. As a result, the I-V curve of nanoribbon 4-
ZZ shows a single-band characteristic with strong NDR.
Furthermore, the spin split of band z0 leads to the spin
polarization in the linear regime. In the passivated 4-
HKKH nanoribbon, however, the current saturates in
the above NDR bias region.

Conclusions
We have systematically investigated the electronic prop-
erties of InSe nanoribbons with Z, A, or K edges. The
edges play a key role in determining the properties since
electron states near the Fermi energy have big weight of
edge atomic orbitals. Bare Z and K edges are conductive
and magnetic. Strong edge-edge interaction may lead to
the transition of n-HZZH nanoribbons from semicon-
ductor to metal as n increases. As a result, bare and H-
passivated nanoribbons with Z and K edges are metallic
except very narrow ones. n-AA and n-HAAH are non-
magnetic semiconductors with energy gaps narrower
and wider, respectively, than that of InSe monolayer.
Their gaps approach each other in a zigzagged way as n
increases, showing an even-odd behavior. The current-
voltage curves of ZZ and KK nanoribbons are character-
ized by strong single-band NDR and spin polarization.
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